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Processing of ND NMR spectra sampled in polar coordinates: a simple
Fourier transform instead of a reconstruction
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Abstract

In order to reduce the acquisition time of multidimensional NMR spectra of biological macromolecules,
projected spectra (or in other words, spectra sampled in polar coordinates) can be used. Their standard
processing involves a regular FFT of the projections followed by a reconstruction, i.e. a non-linear process.
In this communication, we show that a 2D discrete Fourier transform can be implemented in polar
coordinates to obtain directly a frequency domain spectrum. Aliasing due to local violations of the Nyquist
sampling theorem gives rise to base line ridges but the peak line-shapes are not distorted as in most
reconstruction methods. The sampling scheme is not linear and the data points in the time domain should
thus be weighted accordingly in the polar FT; however, artifacts can be reduced by additional data
weighting of the undersampled regions. This processing does not require any parameter tuning and is
straightforward to use. The algorithm written for polar sampling can be adapted to any sampling scheme
and will permit to investigate better compromises in terms of experimental time and lack of artifacts.

Abbreviations: FFT – fast Fourier transform; LP – linear prediction; MEM – maximum entropy method;
S/N – signal-to-noise ratio

Introduction

Recent advances in magnetic field and probe sen-
sitivity have contributed to increase the size of
proteins (Tugarinov et al., 2002) amenable to an
NMR study but surprisingly much less to reduce
the experimental time devoted to sample the set of
multidimensional NMR spectra needed for reso-
nance assignment and structure determination. As
a matter of fact, 3D and 4D NMR spectra are
generally collected in a traditional manner by
monitoring all the chemical shift evolutions inde-
pendently and processing the spectra with fast
Fourier transform (FFT).

A multidimensional experiment can be short-
ened by incrementing several delays in a correlated
manner, as suggested initially in the ‘‘accordion’’
experiment (Bodenhausen and Ernst, 1982). A
frequency was monitored during one of these de-
lays and a exchange process (along the longitudi-
nal axis) during the other. A minor conceptual
modification (i.e. sampling two frequencies) has
led to the reduced dimensionality spectroscopy
(Szyperski et al., 1993; Simorre et al., 1994; Szy-
perski et al., 2002; Bersch et al., 2003). It can be
combined with other time-saving approaches such
as non linear sampling, selective/Hadamard exci-
tation (Kupče et al., 2003; Van Melckebeke et al.,
2004) and with alternate processing techniques LP
(Gesmar et al., 1990), MEM (Rovnyak et al.,*To whom correspondence should be addressed. E-mail:
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2004), FDM (Chen et al., 2004), Multiway
Decomposition (Malmodin and Billeter, 2005).
Distinction should be made between direct (or
deterministic) and search (or iterative) processing
algorithms (see Yoon et al., 2006 for discussion).
The Fourier transform belongs to the first class,
which requires little expertize to use and always
leads to a reasonable result. In contrast, any iter-
ative scheme is more challenging to use as it may
diverge and fail. Although some search algorithms
may lead to better spectra, we will deliberately
limit our discussion of direct methods.

In this paper, we describe a simple linear pro-
cessing method based on Fourier transform that
leads to spectra that can be interpreted quantita-
tively. It is based on the strategy introduced in the
mid-1990s which aims at reducing the number of
sampled points in a ND experiment while trying to
preserve the spectral resolution: it is known under
a number of different names such as reduced
dimensionality, G-matrix FT NMR or projection
spectroscopy. By conflating two evolution periods,
a correlation spectrum between N nuclei can be
sampled in a (N) 1)D spectrum: weighted sums
and differences of NMR frequencies are obtained.
This atypical feature is sometimes considered as
inconvenient for a graphical interpretation of the
data. To alleviate this drawback, reconstruction
methods were introduced to build a ND spectrum
from several projected (N) 1)D, (N) 2)D, ...
spectra. If a large number of projections is ac-
quired, the experiment dimensionality and overall
time is no longer changed, but only its sampling
scheme (polar instead of Cartesian): in other
words, it can thus be referred to as a polar sam-
pling method.

Widely used in disparate research fields such as
astronomy and medical imaging, projection-
reconstruction (PR) aims at finding the ND spec-
trum compatible with the measured projections, by
means of inverse Radon transform, empirical
backprojection schemes or iterative procedures. If
the experimental sensitivity is good enough, the
lower-value (LV) reconstruction (Kupče and
Freeman, 2004a) can be used. While the base plane
noise is reduced, the reconstructed spectrum
exhibits the signal-to-noise of a single projection
and a peak missing in one projection will not be
reconstructed. In contrast, the backprojection
method (BP) proposed by Kupče and Freeman
(2004b) is an additive reconstruction algorithm

that enjoys the benefit of the signal accumulation
of the full experiment. It can produce significant
artifacts when used with a limited set of projec-
tions. To counterbalance these drawbacks, a
hybrid method (combining BP and LV) was
recently proposed by Venters et al. (2005).

We have shown in a previous paper (Marion,
2005) that 1D data sampled on a non-uniform grid
could be Fourier transformed after a Lagrange
interpolation. The polar sampling method leads to
data sampled in a non-linear two-dimensional
manner. Unfortunately, interpolation using Lag-
range polynomial cannot be extended to two
dimensions. Alternatively, we propose here to use
a direct numerical integration of the Fourier
transform. Non-linear sampling methods aim at
maximizing the spectral resolution for a given
amount of experimental time or conversely to
minimize the latter for a given resolution. One
should keep in mind that there is no way to achieve
this goal without violating the Nyquist sampling
theorem at one place or another. Consequently,
the resulting spectrum will exhibit a lower signal-
to-noise ratio than a standard one and may con-
tain artifacts. A balance has to be found between
positive and negative aspects.

While this work was is progress, Kazimierczuk
et al. (2006) have independently proposed a
related FT-based method to process arbitrarily
sampled data points. Although the two techniques
share some basic principles, we will show that their
practical implementation differs as well as their
range of applicability.

Materials and methods

In a regular 3D experiment, the signal is sampled along
a Cartesian grid ft1; t2; t3g, where t1 ¼ n1 � Dt1,
t2 ¼ n2 � Dt2, t3 ¼ n3 � Dt3 and n1; n2; n3 2 N.Note
that complex pairs have to be sampled along each
dimension for quadrature purpose. In the polar sam-
pling method, the signal is measured at the following
points: ft1 � cosða2Þ; t1 � sinða2Þ; t3g, where ða2 ¼
k2 � Da2), n1, k2, n3 2 N and 0 � a2 � p=2. As the
difference between the two schemes boils down to a
coordinate change, the discrete Fourier transform has
to be rewritten in a different coordinate system.

Let us start from the continuous 2D Fourier
transform
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Z 1
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� expð�2p~im2t2Þdt1dt2 ð1Þ

where symbol ~i is used to denote the square root of
() 1) for the second dimension. This formal nota-
tion is essential for the practical implementation of
the 2D FT in order to distinguish the complex pairs
along the two dimensions.

In the case of a discrete 2D transform, the
double integral of Equation 1 is replaced by a
double weighted sum and two coordinate systems
for the sampled data are considered (cf. Figure 1):
a Cartesian grid and a polar grid.

Starting from a (M�N) time-domain matrix
sampled on a Cartesian grid, the discrete 2D
transform is calculated as:
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Becausethe data are equispaced in the time domain
(cf. Figure 1),
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Note that one can compute a (M¢�N¢) frequency
domain matrix (0 £ m<M¢ and 0 £ n<N¢).
However, if M¢ „ M and N¢ „ N, some spectral
leakage or cross-talk can occur because the dis-
crete FT assumes that the input signal is the same
as its periodic extension.

Let us express the 2D transform as a processing
scheme starting from time-domain data in polar
coordinates (as defined in Figure 1) and leading to
a frequency domain data in Cartesian coordinates.
The running variables in the time domain should
be replaced by:
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and the integration area for this point (gray sha-
ded area in Figure 1)
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Thus, the 2D FT can be expressed as:
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If we assume that the angular coordinates ðak
2) are

equispaced, the integration area Sjk can be com-
puted from the area difference of two concentric
disks:

Sjk ¼ p
16N
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If the radial coordinates (t1
j
) are also equispaced,

Equation 9 can be simplified as:

Sjk ¼ Sj ¼ p
4N

2jþ 1ð Þ � Dt1 ð10Þ

Let us note that F mm1 ; m
n
2

� �
defines an hypercomplex

term and that only the real–real component will be
kept once the spectrum has been properly phased.
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Figure 1. Cartesian and polar sampling schemes. In Cartesian
sampling, both time variables (t1

j
and t1

k) are independently
incremented in a linear manner ðDt j

1 and Dt k1 ). The initial value
might be set to 0 or shifted by half the dwell-time (1/(2�SW1)
or 1/(2�SW2) respectively). In polar sampling a radial (time)
coordinate (t1

j
) and a polar coordinate ðaj

2) are used and
converted into time variables t j1 � cosðak

2) and t j
1 � sinðak

2) (the
same spectral width is here used for both dimensions).
0�\ak

2\90�. The same time increment is used for both
schemes and SW1 = SW2. The shaded area corresponds to
the integration area for each data point. Whereas this area does
not change in Cartesian sampling, it has to be evaluated for
each point for polar sampling: defining Dt j

1 ¼ t jþ1
1 � t j

1 and
Dak

2 ¼ akþ1
2 � ak

2, the integration area can be approximated as
S jk � Dt j1 ðt

j
1 � Dak

2).
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These expressions were implemented in a
computer program written in C-language inter-
faced with the nmrPipe processing suite (Delaglio
et al., 1995). As a test case, a HNCO experiment
was recorded on a 0.5 mM sample of human
ubiquitin (pH = 6.2) on a Varian Inova 600
spectrometer using the BioPack ‘‘ghn_coA’’ pulse
sequence. To evaluate the robustness of all pro-
cessing schemes, the experimental data sets were
processed twice, once with addition of Gaussian
noise and once unaltered. The amount of noise
added leads to a 10-fold decrease of S/N in the
Cartesian spectrum processed with FFT.

The time-domain HNCO data were first
transformed along t3 using FFT (using nmrPipe).
Along t1 and t2, the Cartesian data set is then
processed in a conventional manner (FFT using
nmrPipe) and the polar data sets using several
reconstruction methods (BP, LV, HBLV with bin
size of 4) and using our algorithm. For Cartesian
sampling 48� 48 increments (t1

j
, t2

k
) were used and

for polar sampling, 128 radial (t1
j) increments and

18 angular increments ðak
2 ¼ 2:5�; 7:5�; . . .). The

15N and 13C spectral widths are set to 2200 Hz
except for the reconstructed spectra where a con-
stant width of 3100 Hz was chosen to permit
reconstruction over 2200 Hz (3100 Hz = �2�
2200 Hz). The 3D acquisition time is 13 h and the
processing times for one 15N–13C-plane (iMac G5
2.0 GHz) are 280 s (polar FT), <5 s (FFT),
<10 s (LV) and 750 s (HBLV).

Results and discussion

Wehave derived the analytical expression for the 2D
FT in polar coordinates to permit comparison with
other techniques used such as reconstruction. Note
that any non-linear 2D sampling scheme could be
handled with our method, provided that the above
expressions are recasted accordingly. To reconstruct
2D spectra starting from 1D projections, two alter-
native approaches have been proposed where a
provisional 2D spectrum is combined successively
by all 1D projections. For spectra with good sensi-
tivity, this process selects the LV method while for
spectra with poor sensitivity an addition is per-
formed (BP method). The former method (LV) is a
non-linear processing operation, which tends to re-
duce the baseplane noise level, but does not lead to
any signal accumulation. Thus, the reconstructed

spectrum has the same S/N ratio as any individual
projection. In contrast, the additive BP method
benefits from the signal-to-noise ratio of the com-
plete experiment but with the drawback of signifi-
cant broadening as well as ridges and ghost peaks
well above the noise level across the entire recon-
structed spectrum. Both kinds of artifacts can be
reduced by applying a stronger window function, as
shown by Coggins et al. (2005). As we aim at
improving the spectral resolution, we will not dis-
cuss the BP method any further in this paper. To
reconstruct weak cross-peaks with signal accumu-
lation and without the introduction of artifacts,
Venters et al. (2005) have proposed the Hybrid
Back-Projection/Lower Value HBLV algorithm
which uses a two-step reconstruction process,
namely, a BP step followed by an LV step. First, the
projections are grouped into bins for which a BP
reconstruction is computed. All BP reconstructions
are then compared by LV, and the lowest of the
reconstructed intensities is retained. Unfortunately,
this algorithm is highly computational demanding
as compared to the simple BP and LV one.

Figure 2 shows a 15N–13C plane of the HNCO
experiment recorded using Cartesian (inset b) and
polar sampling (all other panels). Keeping in mind
that processing algorithms that perform well on
high-quality spectra may eventually fail when the
signal-to-noise ratio drops significantly, we here
show experimental data on a 0.5 mM sample of
Ubiquitin to which Gaussian noise was artificially
added. The original spectrum will be used later on
as a reference to evaluate the linearity of the pro-
cessing. This aims at simulating less favorable
experimental conditions, such as larger proteins
with broader signals or less sensitive triple reso-
nance experiments (i.e. including more coherence
transfers than HNCO). The plane shown in Fig-
ure 2 was selected because of the two overlapping
signals which can only be resolved if the spectral
resolution is high enough.

The result of a direct 2D FT using data sam-
pled in polar coordinates in Figure 2a can be first
compared with the Cartesian sampling shown in
Figure 2b. A higher resolution but a lower S/N is
observed for the spectrum in Figure 2a. These
differences in resolution and noise level are pri-
marily due to the acquisition scheme rather than to
the processing algorithm. A longer acquisition
time (128 radial increments vs. 48 increments, with
the same dwell time) leads to better spectral
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resolution, but a lower S/N because of relaxation
effects. Using Cartesian sampling (128t1� 128t2)
the same resolution can be reached with a 7-fold
increase in spectrometer time. Note that the 13C
dimension is not sampled in a constant time-
manner whereas the 15N dimension uses a semi-
constant time method (Van Doren and Zuiderweg,
1994).

Using the polar sampling data set, spectra were
reconstructed using the BP (data not shown), LV
(Figure 2c) and HBLV (Figure 2d) methods. The
BP method gives rise to much broader signals than
the LV approach, all other parameters being
identical. In the case of LV, all signals display a
polygonal character (already noticed by Kupče
and Freeman, 2004a) and weaker peaks exhibit
distorted line shape, splitting (cf. the 1D cross-
section of Figure 2) or altered amplitude. This

non-linear behavior may lead to misassignment or
erroneous peak quantification. Note that the dis-
tortion of the weaker signals is partially reduced
using the hybrid method (Venters et al., 2005), at
the expense of the processing time requirements.
As far as the noise is concerned, it is also reduced
in a non-linear manner in the LV method and
cannot be used reliably to define a confidence
interval during peak picking. In contrast, our FT
algorithm in polar coordinates is a linear method
that leads to a realistic noise pattern.

Let us now analyze how the polar FT and the
reconstruction methods behave when the experi-
mental noise changes or when the number of data
points in the angular direction is modified. In
Figure 3 are displayed the outcome of the three
methods (polar FT, HBLV and LV) for the same
plane as in Figure 2: in the left column are
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Figure 2. Comparison of 15N–13C planes taken at 1H = 8.54 ppm in a HNCO recorded on human ubiquitin using polar sampling
(inset a, c and d) and Cartesian sampling methods (inset b). Gaussian noise was added to the time-domain data (see text). After a
standard FFT along the detection dimension, spectrum b) has been processed using apodization and FFT (nmrPipe), spectra (a) using
the algorithm described in the text, spectra (c), (d) using reconstruction methods (c = lower-value LV, d = HBLV with bin size of 4).
The displays do not correspond to the full spectral widths. The lowest level for each contour plot corresponds to 10% of the amplitude
of the upper left cross-peak and the 1D cross-section is taken at the position of the dotted line.
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displayed the HNCO spectra with added noise (as
in Figure 2), in the center one the original HNCO
spectra (with 128 radial (t1

j
) increments and 18

angular increments ðak
2)) and in the right column a

reduced HNCO data set with only six angular
increments. Because the relative scale of these

spectra varies as well as the noise base plane, we
have chosen to plot the first contour level at 10%
of the amplitude of the upper left cross-peak. In
the reconstructed spectra (Figure 3d vs. 3e, and
Figure 3g vs. 3h), the relative intensity of the
cross-peaks changes with the experimental noise,
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Figure 3. Influence of the experimental noise and of the number of projections (angular increments) when processing data sampled in
polar coordinates. Two HNCO spectra were recorded using polar sampling (spectral width of 2200 for polar FT and 3100 Hz for
reconstruction). The original data are shown in the central column, spectra (b), (e) and (h). Using the ‘‘addNoise’’ program provided
with the nmrPipe suite of programs, noise was added to this data set in the time domain and the corresponding spectra are shown on
the left column, spectra (a), (d) and (g). Starting from the original HNCO, only 6 out of 18 projections ðak

2 ¼ 7:5�; 22:5� . . .) were
retained and processed; the corresponding spectra (c), (f) and (i) are shown on the right column. These 3 data sets were processed using
our polar FT (upper row), the hybrid method (middle row) and the LV method (lower row). The peak amplitudes and shapes are not
altered between spectra (a) and (b) as shown in the 1D cross-section. In contrast for LV and HBLV reconstruction, the increase of the
noise strongly alters the weakest signals, for which intensities cannot be correctly quantified. Note the roundish shape of the peaks in
(b) as compared to Cartesian acquisition in Figure 2b (the apodization function exhibits a circular symmetry) and the triangular shape
(in e) and (h) of the partially overlapping signals even at high S/N ratio. For a small number of projection, aliasing due to
undersampling leads to baseline oscillation in (c) which are centered around the observed cross-peaks. Similar patterns are present but
at lower contour levels for HBLV and LV reconstruction.
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in contrast to the polar FT (Figure 3a vs. 3b). This
illustrates the different behavior of the two meth-
ods, the reconstruction being highly non linear and
the polar FT strictly linear. As anticipated, the
weak signals are more accurately reconstructed in
spectra with higher S/N ratio. We have used the
same apodization function for all spectra, i.e. for
the 1D projections – before reconstruction – and
along the radial direction – before polar FT.
However, the cross-peaks in polar FT spectra are
narrower (compare Figure 3b and 3e), although
part of this follows from the requirement to sam-
ple 3100 Hz to enable the reconstruction of
2200 Hz.

When the number of projections is reduced,
spectral artifacts that share the radial symmetry of
the acquisition scheme become visible in the polar
FT (see Figure 3c). These artifacts are oscillations
with positive and negative amplitude, although
only positive contours are plotted in Figure 3. It is
noteworthy that the number of ridges per quad-
rant around a peak corresponds to the number of
angular increments ða k

2 ). This pattern can be as-
cribed to the undersampling along the angular
dimension for longer radial increments (t1

j
). At

first glance, the LV and HBLV methods seem to be
less sensitive to the small number of ða k

2 ) – at least
using a first contour shown in Figure 3 – but the
2D baseline contains not only white noise but also
similar geometric patterns if we go lower with re-
gard to contour level.

Note that, even for a low number of projec-
tions, the line-width of the cross-peak remains
narrower for the polar FT than for the recon-
struction method. The artifacts shown for the
polar FT are similar to those observed in the 1D
spectra obtained with the Lagrange interpolation
method (Marion, 2005) and clearly stem from
geometric properties of the non-linear sampling
scheme. Sarty (2003) has recently shown that
sampling schemes that deliberately incorporate
undersampled regions lead to aliasing artifacts (as
illustrated by the point spread function) located
far away from the parent peak. Their complete
removal requires an average sampling density at
the Nyquist density and is thus incompatible with
a strict economy of data collection.

The presence of these ridges is clearly a
drawback of this method. However, NMR
spectroscopists are used to live with artifacts
provided that they exhibit well-identified

patterns. In this respect, sinc oscillations ob-
served in FT spectra are illustrative: as their
complete removal would require much stronger
apodization function, it is common practice to
leave them during processing: they can be later
on filtered out by a peak picking routine which
can account for their very characteristic geo-
metrical signature (see for instance, the ‘‘Sinc
Detect’’ option of nmrPipe (Delaglio et al.,
1995)). In order to reduce the amplitude of the
interferences while keeping the acquisition short,
data-weighting techniques – as for undersampled
MRI data (Pipe, 2000) – could be combined with
the 2D polar FT. The polar FT is implemented as a
weighted double sum (Equation 7) where the coef-
ficients (Sjk = Sj) (Equation 10) should increase in
a linear manner for radial increments. To minimize
the artifacts in MRI due to a violation of the Ny-
quist sampling criterion (the sampling density is no
longer high enough), Pipe invoked a weighting of
the undersampled data according to the inverse of
their density. This technique has been implemented
by multiplying the time data by an apodization
functionWj. We define an indice j0 along the radial
dimension; for j< j0 the weighting coefficient
Wj = 1.0 and for j> j0,W

j is reduced such that the
product Wj�S j remains constant (= Wj0�Sj0).
Figure 4 display the outcome of such weighting
functions with j0 = 32 and j0 = 16 (for 128 radial
increments). Minimizing the relative weight of the
last data points reduces the artifacts but broadens
the peaks. As in the case of data sampled in the
Cartesian space, the choice of an optimal apodiza-
tion function is a compromise between resolution
and artifact containment. If this strategy is pushed
further, the signal line-width converges asymptoti-
cally to that reported for a Cartesian sampling
(Figure 2b). In conclusion, the improved resolution
afforded by the radial sampling (for a given exper-
imental time) is strictly correlated with the under-
lying violation of the Nyquist criterion. Conversely,
the radial artifacts are the fine to pay for this
violation.

Let us now compare our algorithm with that
recently proposed by Kazimierczuk et al. (2006).
Both methods aim at Fourier transform data with
respect to more than one time variable and start
from the same mathematical expression for two-
dimensional integral (Equation 1 here and Equa-
tion 11 in Kazimierczuk et al. (2006)). However,
their derived version for the discrete case leaves
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out the integration area coefficients (Sjk – cf.
Equation 6) leading to the simplified expression:
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n
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f t j
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k
2

� �
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jk ð11Þ

Note that this approximation assumes a nearly
linear acquisition scheme, where Sjk is constant. In
the case of radial acquisition, Sjk increases linearly
along the radial dimension (Equation 10 and
Figure 1b); omitting this terms amounts here to

scaling the data differently or, in other words,
applying a apodization function defined as 1/t. The
difference between the two implementations can be
rationalized in the following manner. Focusing to
the radial dimension, we are evaluating the fol-
lowing integral

FðmÞ ¼
Z 1
�1

t � fðtÞ expð�2pimtÞdt ð12Þ

while Kazimierczuk et al. are computing:
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Figure 4. Influence of data weighting function for reducing artifacts. Apodization aims at lessening the contribution of the
undersampled region (Pipe, 2000). The effect of 3 different functionsWj is illustrated: in (a)Wj = 1.0 for all j, in (b) and (c)Wj remains
constant at the beginning of the signal (until j0 = 32 and j0 = 16, respectively) and decreases later on. In practice, the time-domain
data are multiplied byWj�Sj, whereWj is a ‘‘standard’’ apodization function and Sj related to the integration area (Equation 10). For
each processing, Wj and Wj�Sj are shown on the left hand side (defined in arbitrary units) and the resulting spectrum on the right. As
expected, this apodization smoothes out the data and thus reduces the aliasing artifacts (along with some white noise) at the expense of
the peak line width.
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F̂ðmÞ ¼
Z 1
�1

fðtÞ expð�2pimtÞdt ð13Þ

A property of the Fourier transform (Arfken and
Weber, 2005) states that, FðmÞ is actually the
derivative of F̂ðmÞ (with a 90� phase shift). Let us
move to the frequency domain and consider a
typical liquid-state signal described by a Lorentz-
ian shape centered at frequency m0 and of line
width G. Its absorptive and dispersive components
(Aðm) and Dðm)) are given by:
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These expressions can be derived with respect to
the frequency variable ðm) leading to:

d

dm
AðmÞ ¼ 1

p
ðm� m0ÞC

ðm� m0Þ2 þ ð0:5 � CÞ2
h i2

d

dm
DðmÞ ¼ 1

p
ð0:5 � CÞ2 � ðm� m0Þ2

ðm� m0Þ2 þ ð0:5 � CÞ2
h i2

ð15Þ

Inspection of Equation 15 reveals that the deriv-
ative of one component exhibits the same sym-
metry as the other one: namely, the derivative of
the dispersive component d½DðmÞ�=dm is symmetri-
cal with a narrow positive signal surrounded by
two negative lobes (note that this is no longer a
Lorentzian shape). Using these expressions, the
line-width of the signal can be estimated as G for
the absorptive component and 0.484�G for the
derivative of dispersive component. Therefore, for
Lorentzian shapes, the integral computed accord-
ing to Equation 12 leads to narrower signals than
using Equation 13, irrespective of the original
spectral line-width.

Whereas the omission of the Sjk coefficients
(as proposed by Kazimierczuk et al., 2006) has
no influence on signal positions, it strongly
modifies the line-widths (assuming an identical
apodization function) by a factor of two. Fur-
thermore, as the first point is overestimated (as
compared to the other ones), a positive dc offset
is present (see Figure 3a of Kazimierczuk et al.
2006) which increases the signal integral. In
contrast, with our method, the average of the
artifacts due to the radial sampling is zero. In

order to eliminate them (or at least make them
less prominent), alternate acquisition schemes
have to be designed. Kazimierczuk et al. (2006)
have introduced a spiral sampling scheme
(widely used in MRI) that leads to cleaner
spectra: the choice of an angular increment
which is not a integer fraction to p=2 eliminates
the periodicity responsible of the pattern visible
for radial sampling. In this case, it is difficult to
anticipate the consequence of leaving out the Sjk

coefficients which express in a more complex
manner.

Two last issues associated with the FT of
polar data deserve further discussion: the
quadrature detection and the Nyquist frequency.
The sign detection along both dimensions re-
quires the sampling of 2 signals (x, y) along
each of them leading to a hypercomplex signal
made of 4 components. In contrast to projection
method, no linear combination to obtain zero-
and double quantum coherence (Bersch et al.,
2003) is necessary before processing. As far as
the Nyquist sampling theorem, some local un-
dersampling is necessary to reduce to experi-
mental time and fully capitalize on radial
acquisition. In contrast to Kazimierczuk et al.
(2006) who emphasize the necessity to fulfill the
Nyquist theorem using a global criterion
ðsw1Dt1 þ sw2Dt2\1) along the two dimensions,
a partial fulfillment along both dimensions at the
beginning of the acquisition seems to be suffi-
cient as shown in our previous paper (Marion,
2005).

Conclusion

We have shown in this paper that the use of
discrete Fourier transform is by no means limited
to data sampled on a Cartesian grid according to
the Nyquist sampling theorem. If rewritten in a
different coordinate system with proper weighting
of the experimental data, FT can virtually be
applied to any sampling scheme. In this first ac-
count, we have compared this algorithm with
reconstruction methods proposed in the litera-
ture. For the same data, much narrower signals
can be obtained using polar FT, but aliasing
artifacts become more visible for a small number
of projections than in LV or HBLV methods. It
should be said again that these artifacts are the
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direct consequence of the violation of the Nyquist
theorem and not of the implemented processing
itself. The major advantage of the polar FT is its
linearity which permits a quantitative interpreta-
tion of the spectra using the noise as a confidence
estimate. It is likely that more sophisticated non-
linear processing (such as MEM (Rovnyak et al.,
2004) or FDM (Chen et al., 2004)) could yield
better and/or cleaner spectra when used by
experienced users, but the lack of any adjustable
parameter in our method – except for apodization
– makes it widely accessible to all NMR spec-
troscopists.

This general FT processing scheme opens up
prospects for alternate data acquisition, because
any timing can be handled. The sampling timing
used here for the radial direction simply imitates
the popular Fourier discretization scheme, i.e. on
the zeros of a sine function ðz ¼ Np); Equation 7
could be rewritten as a Hankel/Bessel transform
(Bracewell, 1999) for the radial component and
thus the zeros of a Bessel function J0(Æ) would
probably be more logical (Myridis and Chamzas
1998). Kazimierczuk et al. (2006) have reported,
with their evenly weighted method, an improve-
ment when replacing polar sampling with spiral
sampling, but this amounts more or less to
spreading the artifacts over the entire spectral
area. Our general FT algorithm is well suited as
the framework for exploring new sampling
schemes, as done recently in the field of MRI, to
search for optimal compromise between experi-
mental time, spectral resolution and moderate
artifacts.
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